CSCI 1430 Final Project Report: Portrait Image Relighting

Adam Pikielny Ben Givertz

Jack Dermer Aalia Habib

Brown University
May 2020

Abstract

Traditional methods for relighting faces require knowl-
edge of the subject’s reflectance, lighting, and structure. We
sought to implement a deep learning algorithm to solve this
task and relight portraits given only a single image as input.
We implemented an hourglass-shaped CNN from research
by Zhou et al. [5] in order to relight portrait images. The
model first separates the input image into facial and lighting
features, from which a specialized lighting network predicts
the direction of light. Then, the facial features are combined
with the desired new lighting. Using a synthesized data set of
portrait images under various artificial lighting conditions
for training and ground truth, we were able to achieve real-
istic results, outputting images at a resolution of 256 x 256.

1. Introduction

Image relighting is a challenging and fascinating problem
in computer vision without a clear solution. Within the field
of image relighting, we focused on faces (portrait relight-
ing). This involves calculating the structure and lighting of
a face, determining its reflectance, and finally determining
how the image would look under new conditions. Generally,
this would require many cameras in order to determine the
structure of the image. We sought to implement a model that
would be able to relight faces given only a single input im-
age and target lighting condition. We believe this technology
will be immensely helpful for film and photography, from
video editors who need to relight a scene after it is filmed,
to amateur photographers who want to edit their photos or
paste someone into a new image.

Relighting images is a difficult task for multiple reasons.
First, it requires knowledge of the 3D structure of the scene
to be relit. Second, it requires knowledge of the reflectance
of each object in the image. Thus, many current implemen-
tations require tens or hundreds of photos as input along
with meticulously calculated lighting conditions. We reduced
this challenge by focusing only on faces. By doing this, we
were able to assume Lambertian (matte) reflectance, and our

model was able to learn a general 3D structure for faces.

2. Related Work

We read several relighting papers to determine the best
direction for us to proceed. We originally found a research
paper by Microsoft Research on scene relighting using deep
learning, which sparked our interest in the topic [1]. The
researchers used a neural network to calculate the light trans-
port matrix of a scene using hundreds of images under vari-
ous lighting conditions in order to relight it. Unfortunately,
we did not have the computing resources to implement their
findings ourselves. We also read a paper on image relighting
from optimal sparse samples by Xu et al. [4] and another
on object background relighting by Toisoul et al. [3], but
eventually determined the challenge of relighting arbitrary
scenes was too difficult given our limited resources.

We found a paper by Sun et al. [2] to be very assuring; it
was able to successfully relight faces from single images with
absolutely no prior knowledge of reflectance or geometry of
the face. However, the data collection process required an
advanced camera rig that we couldn’t recreate.

Eventually, we settled on Deep Single Image Portrait
Relighting by Zhou et al. [5]. Similar to the one above, it
focused only on faces, which we found to be a convenient
division of the original task. The authors kindly released their
synthesized data set of 1024 x 1024 high resolution portrait
images under various lighting conditions, which allowed us
to implement their model.

3. Method

In order to implement portrait relighting, we trained a
deep neural network with the architecture provided by [5].
Both the training data and strategy had to be altered from
the original paper to fit our constraints on storage space and
computing power.

3.1. Dataset

Zhou et al. were able to extract the "normal” (3D recon-
struction) of the faces in their data set in order to create relit
images. We used these as our ground truth examples of target



input image

I

predicted
lighting
L

output image

I!

target
Lighting
L *

Figure 1. CNN architecture model from Zhou et al.

and predicted lighting applied to input images.
The data set linked to in their paper contained 30,000
images and their corresponding lighting matrices each under

5 lighting conditions, totaling upwards of 250 GB of data.

After attempting various techniques to move the data into
our Google Cloud instance, we determined it was too large
to for us to manipulate or use. Thus, we decided to scale
down the data set to reduce the size. Concerned about how
this might affect our results, we emailed the authors of the
paper, and they promptly responded, agreeing that scaling
down the data set was a good idea, and further suggesting

that we not implement their GAN loss for ease of training.
We wrote a script to scale each image down to 128 x 128.

This decreased our data size to around 500 MB, which was
exceedingly easier for us to work with. It was seamless to

upload and run this data on Google Cloud Platform (GCP).

After achieving successful results in our model, we decided
to create a 256 x 256 data set, which immensely increased
the quality of our results.

In our original training sessions, the entire data set was
loaded into memory before training began, a process which
took around 30 minutes each time. We then transitioned
to using an index based data loader provided by PyTorch
which handled multi-threaded CPU data loading as well
as random batching. Once implemented, we were able to
efficiently train our model with batches as inputs instead of
single images. Implementing this removed the 30 minute
data loading period and decreased epoch training time from
12 minutes per epoch all the way down to 2 minutes.

3.2. Computation

We decided to use GCP to run our model, creating a
PyTorch environment instance with a CUDA GPU. Data
was saved on GCP, so it was quick to load. We also used
OpenCV for image manipulation, and Kornia to calculate
images gradients.

3.3. Model Architecture

We followed the hourglass model architecture of Zhou
et al., as shown in figure 1. The image, I, is first passed
through a series of convolutions with max pooling, batch
normalization and ReLU activation. Eventually, it is split
up into Zy and Z, corresponding to an encoding of the
facial features and lighting respectively. Next, Z, is passed
through a lighting network, and the predicted lighting, L is
output. The target lighting, L™, is passed in, encoded to Z7
and joined with Z for the second half of the network. The
blue connections running across the top of the figure are skip
connections. These connections pass the output of a layer to
the size-corresponding layer input on the other side of the
model. In the original paper skip connections were used in
specific epochs to improve results; however, upon debugging
we realized they worsened our results, so we decided to
remove them for our final model. After more convolutions,
the network returns the output image, I*, which along with
our predicted source lighting L, is used to calculate loss.

3.4. Loss

Our loss function was a slightly modified version of the
function found in the source paper. As seen in equation (1),
the loss is combination of the L; loss taken from the source
image and its gradient as well as an averaged version of the
L loss of the predicted lighting, where IV, is the number of
pixels per image, and IV; is the number of lighting channels:

1 *\ 2
Nl (L s—L s)
ey

In contrast to the original paper, our loss function includes

the N; term, which averages the lighting loss across its chan-
nels. Before adding this term, the Ly lighting loss was too

large in proportion to the image loss and thus the model

1 " *
Ly = (M = Bl + IV~ VI ) +
p



Figure 2. 256 x 256 relit portrait images under our model and corresponding lighting conditions.

was heavily over-training to predict lighting instead produce
novel lighting conditions.

e e _ e

Figure 3. Left: Output with unscaled loss, Right: Output without
corrected loss.

4. Results

Our final model, trained on 256 x 256 images for 20
epochs gave us the results above. We evaluated our success
by taking the average mean squared error between our out-
puts and the outputs of the model in the paper on 50 portrait
images. We chose to use the output of the model as our
”ground truth” because true relit images that matched the tar-
get relighting exactly would have been very hard to produce.
We found that our output varied, on average, by 2.88%.

The primary differences between our model and theirs
include: the use of a facial-feature-loss, training on different
image sizes, and the removal of skip layers. We chose not
to implement the feature loss because we were unable to
determine the best way to extract facial features and wanted
to focus more on relighting. We trained on 256 x 256 images
instead of 1024 x 1024 in order to upload them to GCP and

train in a reasonable amount of time.

Our choice to remove the skip layers resulted from exper-
imentation. In figure 4 we show the output using skip layers
(every relit image output was the same) and the output once
we trained without them. We hypothesize that the reduced
size of our inputs to the model was incompatible with the
skip layer architecture.

As evidenced in the above images, there are some artifacts
that appear in the cases of extreme lighting (on the leftmost
and rightmost images of Obama, they are the most evident),
especially near the bridge of the nose. We believe the feature
loss would have helped smooth them out in order to maintain
shading differences that characterise certain facial features.

Figure 4. Progression of epochs under incremented skip layers.

4.1. Discussion

An interesting outcome of our implementation is the fact
that in order to mimic the state of the art image relighting
using much smaller training data, we had to remove the skip
layers. Since skip layers are typically used to preserve infor-



Figure 5. The lighting from the second image is transferred to the portrait.

mation that is lost during convolution or pooling and passed
along to deeper layers, it is surprising that removing them im-
proved our results. Since we did not modify the parameters
of convolutional layers, we believe that the outputs of each
individual convolutional layer did not contain enough infor-
mation to feed into another high level layer directly. Thus,
this resulted in a model that was unable to extract or insert
lighting information. We hypothesize that the skip layers
were actually propagating some noise and removing them
allowed our model to train better on the smaller images.

We also opted not to implement the L ; feature loss, which
compared extracted feature points of the images. We hypoth-
esized that this loss would not be beneficial for the same
reason that skip layers were not. The smaller resolution
would not allow for proper feature identification. We can see
in our data that the nose is often the best way to tell that our
images are artificial. This may have been fixed with feature
loss and higher resolution images.

5. Applications and Augmentations

After finishing our model, we were able to save our
weights and run a testing script on our local machines to
quickly relight images. This opened up a world of possibili-
ties for possible applications.

5.1. Image Combination

Our model conveniently outputs the predicted lighting of
the input image. We realized we could use this to extract the
lighting of one face and add it as the target for another. We
implemented this script and it worked quite well immediately.
However, we realized that in the case of input images where
the face was not prominent or centered in the frame, it was
difficult to extract lighting. We utilized a simple bounding
box face classifier implemented in OpenCV to crop our
inputs for the network. Unsurprisingly, cropping the relit
image did not work very well because upon uncropping,
the lighting did not fit with the background and our model

was unable to account for relighting other parts of the scene.
However, cropping the lighting image successfully isolated
the face and helped us achieve better results. In figure 5, the
face in the lighting image is relatively small but our network
still successfully extracts and applies its lighting.

5.2. Python GUI

We created a Python GUI that applies face relighting from
one image to another. This is intended for people who do not
have experience with Python and may have trouble running
scripts through a command line. The GUI is meant to be
used as a supplement to photo editing applications such as
Adobe Photoshop. The user can upload a cropped image of
a face they are trying to insert into a group picture, as well
as the group picture for lighting reference. We utilized a
face detection CNN to find faces in the group picture. The
user selects a face from the group picture that most clearly
represents the desired light. Then, the program saves the new,
relit image to a location of the user’s choosing.

5.3. Photoshop Plugin

We also would like to implement a Photoshop plugin to
aid in relighting faces. We began to work on it but found that
it required extensive knowledge of C++ and the Xcode editor.
We are currently looking for a way to export our python code
to a binary that can be easily integrated with the Photoshop
APL

5.4. Live Webcam

We used OpenCV to write a Python script that connects to
the webcam and runs the relighting network on each frame.
Because the model is large and requires a lot of computa-
tional power, running this script on a 2018 Macbook Pro
results in a frame rate of approximately 4 fps, and the relight-
ing has a few artifacts between frames.



6. Conclusion

We believe that our portrait relighting implementation
was very successful. The biggest challenge was working
with and trying to understand the hourglass neural network
architecture. Through trial and error, we were able to better
understand skip layers and lighting in images as well as
different loss metrics. We foresee that our extensions of the
functionality, especially using the model to transfer lighting
between images, could potentially be useful in image editing
software. Overall, we are excited that our model performs
similarly to the state of the art results of our source paper
and are interested in exploring further applications.

References

[1] P.Ren, Y. Dong, S. Lin, X. Tong, and B. Guo. Image based
relighting using neural networks. 2015. 1

[2] T. Sun,J. T. Barron, Y. Tsai, Z. Xu, X. Yu, G. Fyffe, C. Rhe-
mann, J. Busch, P. E. Debevec, and R. Ramamoorthi. Single
image portrait relighting. 2019. 1

[3] A. Toisoul and A. Ghosh. Image-based relighting using room
lighting basis. 2016. 1

[4] Z. Xu, K. Sunkavalli, S. Hadap, and R. Ramamoorthi. Deep
image-based relighting from optimal sparse samples. ACM
Transactions on Graphics (TOG), 37(4):126, 2018. 1

[5]1 H. Zhou, S. Hadap, K. Sunkavalli, and D. W. Jacobs. Deep
single portrait image relighting. 2019. 1

Appendix
Team contributions

Adam Pikielny I worked on the training function and devel-
oping our modified loss function. After we successfully
relit faces, I worked on the face-to-face relighting and
implemented our face detection features to improve the
model.

Ben Givertz I worked on batching and training efficiency,
as well as data preprocessing to scale down the initial
data set. I also worked on the loss function, and after
we were able to train models quickly, I trained various
models by tweaking the hyperparameters of the system.

Jack Dermer I worked on data preprocessing, specifically
researching pytorch Datasets and Dataloaders. I also
worked on batching and skip layers. Lastly, I developed
a GUI using python tkinter, our network, and a face
detection CNN.

Aalia Habib I worked on data preprocessing and reworking
the loss function as well as implementing the live image
relighting functionality. I also attempted to integrate the
network with the Photoshop API but was unsuccessful.



